Ähnlichkeit und Unsicherheit in der medizinischen Bildanalyse

Ähnlichkeit von Bilder ist einer der wichtigsten Bestandteile der medizinischen Bildverarbeitung. Das Finden von Korrespondenzen zwischen medizinischen Scans von verschiedenen Patienten, Zeitpunkten und Modalitäten ist von enormer Bedeutung für klinischen Anwendungen von Bildanalyse, z.B.: Atlas-basierte Segmentierung, Bewegungsschätzung, Langzeitstudien und multi-modaler Bildfusion. Die Definition von Ähnlichkeiten zwischen Bildern ist schwierig da Scans häufig lokale Variationen in Kontrast und Rauschen aufweisen, sowie z.T. mit unterschiedlichen Aufnahmetechniken generiert wurden. Ein Ziel diese Projektes ist die Erarbeitung und Weiterentwicklung von neuen Ähnlichkeitsmaßen, die invariant zu unterschiedlichen Modalitäten und robust gegenüber Störeinflüssen sind, jedoch weiterhin sehr gut zwischen verschiedenen anatomischen und geometrischen Bildmerkmalen unterscheiden können.

Der “modality independent neighbourhood descriptor” (MIND) ist ein multi-dimensionaler lokaler Bilddeskriptor (siehe Abb. 1), den wir, basierend auf dem Konzept der Selbstähnlichkeit, für multi-modale Registrierung entwickelt haben [1]. Die Anwendung von MIND zeigt deutliche Verbesserungen für die Registrierung von CT und MRT Thoraxaufnahmen im Vergleich zu anderen Methoden auf dem Stand der Technik (z.B. mutual information). Das Verfahren kann auch zur Registrierung von Scans der gleichen Modalität, z.B. 4D-CT verwendet werden, und liefert hierbei eine verbesserte Genauigkeit und erhöhte Robustheit. Jeder MIND Deskriptor wird basierend auf Distanzen lokaler Bildpatches in der Umgebung jedes Voxels unabhängig voneinander für beide Scans berechnet. Der Vergleich zweier Bilder erfolgt durch einfache Distanzen, z.B. die Summe absoluter / quadratischer Differenzen der Merkmalsvektoren. Der “self-similarity context” (SSC) [2] ist eine Weiterentwicklung von MIND. Dieser definiert lokale Nachbarschaftsbeziehungen für die Berechnung der Selbstähnlichkeiten so, dass der lokale Informationskontext präziser dargestellt wird und sich die Paarung der Deskriptoren verbessert. Wir haben weiterhin ein effizientes Quantisierungsschema entworfen, welches eine Hardware-technisch sehr schnelle Berechnung von Distanzen zwischen zwei Deskriptoren mittels des Hamming-Gewichtes ermöglicht. Die erfolgreiche Anwendung für die herausfordernde Registrierung von intra-operativem 3D Ultraschall zu MRT Aufnahmen wurde in [2] gezeigt.

Unsicherheit ist ein bedeutendes Problem für alle automatischen Methoden der Bildanalyse. Allerdings, erlauben wenige bekannte Algorithmen die Schätzung und Ausgabe von Unsicherheiten der berechneten Ergebnisse. Die automatische Fehlererkennung von medizinischen Bildverarbeitungsmethoden hat eine bedeutende Wirkung für die Etablierung neuer Methoden in der klinischen Praxis. Die Rückgabe der Zuverlässigkeit wäre nützlich für Ärzte um zu entscheiden ob in einem speziellen Fall die automatische Analyse berücksichtigt werden soll. Diskrete Optimierungsmodelle (basierend auf Markov Random Fields) erlauben Verfahren zur Berechnung der Unsicherheit, da sie auf die Wahrscheinlichkeit für das Auftreten von bestimmten Modellparametern rückschließen können. Für die Anwendung der 3D Bildregistrierung haben wir ein Verfahren entwickelt, welches über eine Vielzahl von möglichen Lösungsvorschlägen (dense displacement sampling, deeds) für die gesuchten Bewegungsvektoren optimiert [3,4]. Es ermöglicht eine sehr schnelle und zugleich genaue Registrierung von unterschiedlichen medizinischen Bildern, und wurde insbesondere für einen großen Datensatz von Lungen-CT Aufnahmen evaluiert (ein Beispiel ist in Abb. 2 gezeigt, quantitative Ergebnisse siehe http://empire10.isi.uu.nl/res_deedsmind.php). Die Verteilung der Wahrscheinlichkeiten über den Raum potentieller Verschiebungsvektoren kann mit Hilfe bekannter Optimierungsverfahren (z.B. belief propagation) bestimmt werden, und genutzt werden um die lokale Genauigkeit der Registrierung zu schätzen. Wir haben dieses Verfahren in [5] erfolgreich für die Verbesserung von Atlas-basierter Segmentierung eingesetzt. Ein weiterer Aspekt der in diesem Projekt betrachtet wird ist die Verwendung von verschiedenen (unterschiedlichen) komplementären Bildbeschreibungen. Der Einsatz von mehreren Graphen aus Supervoxeln wurde in [6] untersucht.

Die Software, welche von M.P. Heinrich für die unten genannten Veröffentlichungen entwickelt wurde, kann frei unter folgender Adresse heruntergeladen werden: www.mpheinrich.de/software.html
Dabei sind ein sehr effizientes und genaues 3D Registrierungspaket deeds für Bilder der gleichen oder unterschiedlicher Modalität, sowie Referenzcode um MIND und SSC Deskriptoren zu berechnen.

Abb. 1: Konzept zur Nutzung von MIND für multi-modale Registrierung. Die Deskriptoren werden für jeden Voxel in CT und MRT berechnet. Das Ergebnis für drei beispielhafte Regionen ist gezeigt:  homogene Intensitäten (Leber), Eckpunkte eines Rückenwirbels und ein Bildgradient am Rand des Fettgewebes. Die Deskriptoren sind unabhängig von der jeweiligen Modalität und können mittels einfacher (quadratische/absoluter) Differenzen verglichen werden.

Abb. 2: Animiertes Beispiel für die Registrierung von 4D CT Bildern der Lunge. Die Axial-, Koronal- und Sagittal-Ebenen sind von links nach rechts gezeigt. Die Ein- und Ausatmungsphase der Atmung werden als Farbüberlagerung in grün und magenta dargestellt. Das Ergebnis der 3D Registrierung mit deeds kann im zeitlichen Ablauf als Video abgespielt werden. Die Bewegungsschätzung ist in der Lage die natürlich vorkommende Gleitbewegung zwischen Lungenoberfläche und Brustkorb realitätsgetreu zu berechnen.

Ausgewählte Publikationen:

  1. Mattias P. Heinrich, Mark Jenkinson, Manav Bhushan, Tahreema Matin, Fergus V. Gleeson, Sir Michael Brady, Julia A. Schnabel.
    MIND: Modality Independent Neighbourhood Descriptor for Multi-modal Deformable Registration.
    Medical Image Analysis. vol. 16(7) Oct. 2012, pp. 1423–1435
  2. Mattias Paul Heinrich, Mark Jenkinson, Bartlomiej W. Papiez, Sir Michael Brady, Julia A. Schnabel.
    Towards Realtime Multimodal Fusion for Image-Guided Interventions Using Self-similarities
    In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013, Lecture Notes in Computer Science Volume 8149, 2013, pp 187-194
  3. Mattias P. Heinrich, Mark Jenkinson, Sir Michael Brady, Julia A. Schnabel.
    MRF-based Deformable Registration and Ventilation Estimation of Lung CT.
    IEEE Transaction on Medical Imaging. Vol. 32(7), 1239 - 1248, 2013
  4. MP Heinrich, M Jenkinson, M Brady, JA Schnabel.
    Globally Optimal Registration on a Minimum Spanning Tree using Dense Displacement Sampling
    In: Medical Image Computing and Computer Assisted Intervention (MICCAI) 2012. LNCS 7512, pp. 115-122. Springer, Berlin (2012)
  5. Mattias P. Heinrich, Ivor J.A. Simpson, Mark Jenkinson, Sir Michael Brady, Julia A. Schnabel.
    Uncertainty Estimates for Improved Accuracy of Registration-Based Segmentation Propagation using Discrete Optimisation
    MICCAI Workshop on Segmentation, Algorithms, Theory and Applications (SATA), Nagoya 2013
  6. Mattias P. Heinrich, Mark Jenkinson, Bartlomiej W. Papiez, Fergus V. Gleeson, Sir Michael Brady, Julia A. Schnabel.
    Edge- and Detail-Preserving Sparse Image Representations for Deformable Registration of Chest MRI and CT Volumes.
    In: Information Processing in Medical Imaging (IPMI) 2013. LNCS 7917, 463-474, Springer (2013)

Projektteam:

Jun.-Prof. Dr. Mattias P. Heinrich
Dr. Jan Ehrhardt
Prof. Dr. Heinz Handels

Kooperationspartner:

Prof. Dr. Julia A. Schnabel
Institute of Biomedical Engineering
University of Oxford

imi_projekt_heinrich.png
Erstellt am 2. Juni 2014 - 15:50 von Wrage. Zuletzt geändert am 30. Juni 2014 - 10:22.

Anschrift

Institutssekretariat
Susanne Petersen

Neue Rufnummer:
Tel+49 451 3101 5601
Fax+49 451 3101 5604


Gebäude 64 (Informatik)

Ratzeburger Allee 160
23538 Lübeck
Deutschland