Indoor Localisation
Orientation in rooms without windows is often not an easy task - whether in airports, large hospital complexes or museums. In order to find the shortest route to a room or an object, the current position of a person in the building is necessary - this is the goal of "Indoor Localization".
Our research group in close cooperation with the University of Applied Sciences Würzburg-Schweinfurt (Prof. Frank Deinzer) is working on this challenge. Our technology "simpleLoc" has already proven itself in the German Hat Museum in Lindenberg, in the Straubing Gaeubodenmuseum, as well as in the city hall of Würzburg. The current position can be precisely calculated using sensor fusion, based on the existing infrastructure of a building, the sensors provided by smartphones and a set of wireless beacons.
Contact person
Publications
Projekt Homepage mit weiteren Informationen zur Technologie und einige Videos zu Demo-Installationen. Bayerische Forschungsstiftung: Indoor Bildlokalisierung. Laufzeit: 01.07.2010 - 30.04.2011. FHWS (Stellen aus Landesmitteln). Laufzeit: seit 01.03.2012.
Bayerischen Sparkassenstiftung: Lokalisierung für fabulAPP. Förderung für Steinbeis Transferzentrum New Media and Data Science. Laufzeit: seit 01.12.2018.
Markus Ebner, Toni Fetzer, Markus Bullmann, Frank Deinzer, Marcin Grzegorzek. Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand. Sensors 2020, 20(22), 6559.
Markus Bullmann, Toni Fetzer, Frank Ebner, Markus Ebner, Frank Deinzer, Marcin Grzegorzek. Comparison of 2.4 GHz WiFi FTM- and RSSI-Based Indoor Positioning Methods in Realistic Scenarios. Sensors 2020, 20(16), 4515. doi.org/10.3390/s20164515
Toni Fetzer, Frank Ebner, Markus Bullmann, Frank Deinzer, and Marcin Grzegorzek. Smartphone-Based Indoor Localization within a 13th Century Historic Building. Sensors, 18(12), 2018.
Markus Bullmann, Toni Fetzer, Frank Ebner, Marcin Grzegorzek, and Frank Deinzer. Fast Kernel Density Estimation using Gaussian Filter Approximation. In Information Fusion (FUSION), 21th International Conference on, Cambridge, United Kingdom, July 2018.
T. Fetzer, F. Ebner, F. Deinzer, and M. Grzegorzek. Recovering from Sample Impoverishment in Context of Indoor Localisation. In Indoor Positioning and Indoor Navigation (IPIN), International Conference on, Sapporo, Japan, September 2017. IEEE.
Frank Ebner, Toni Fetzer, Frank Deinzer, and Marcin Grzegorzek. On Wi-Fi Model Optimizations for Smartphone-Based Indoor Localization. ISPRS International Journal of Geo-Information, 6(8), August 2017.
T. Fetzer, F. Ebner, L. Köping, M. Grzegorzek, and F. Deinzer. On Monte Carlo Smoothing in Multi Sensor Indoor Localisation. In Indoor Positioning and Indoor Navigation (IPIN), International Conference on, Alcala de Henares, Spain, November 2016. IEEE.
Frank Ebner, Toni Fetzer, Marcin Grzegorzek, and Frank Deinzer. On Prior Navigation Knowledge in Multi Sensor Indoor Localisation. In Information Fusion (FUSION), 19th International Conference on, pages 557--564, Heidelberg, Germany, July 2016. IEEE.
Frank Ebner, Toni Fetzer, Lukas Köping, Marcin Grzegorzek, and Frank Deinzer. Multi Sensor 3D Indoor Localisation. In Indoor Positioning and Indoor Navigation (IPIN), International Conference on, Banff, Canada, December 2015. IEEE.
Toni Fetzer, Frank Deinzer, Lukas Köping, and Marcin Grzegorzek. Statistical Indoor Localization Using Fusion of Depth-Images and Step Detection. In Indoor Positioning and Indoor Navigation (IPIN), International Conference on, Busan, South Korea, September 2014. IEEE.
Frank Ebner, Frank Deinzer, Lukas Köping, and Marcin Grzegorzek. Robust Self-Localization using Wi-Fi, Step/Turn-Detection and Recursive Density Estimation. In Indoor Positioning and Indoor Navigation (IPIN), International Conference on, Busan, South Korea, September 2014. IEEE.
Lukas Köping, Marcin Grzegorzek, and Frank Deinzer. Probabilistic Step and Turn Detection in Indoor Localization. In Conference on Data Fusion and Target Tracking 2014: Algorithms and Applications (DFTT 2014), pages 1--7, Liverpool, United Kingdom, April 2014. IEEE.
Lukas Köping, Frank Ebner, Marcin Grzegorzek, and Frank Deinzer. Indoor Localization Using Step and Turn Detection Together with Floor Map Information. FHWS Science Journal, 3(1):1--9, 2014.
Github Seite mit diversen Toolings und Datensätzen.
- Research
- AI und Deep Learning in Medicine
- Medical Image Processing and VR-Simulation
- Integration and Utilisation of Medical Data
- Sensor Data Analysis for Assistive Health Technologies
- Medical Image Computing and Artificial Intelligence
- Medical Data Science Lab
- Medical Deep Learning Lab
- Medical Data Engineering Lab
- Junior Research Group Diagnostics and Research of Movement Disorders