Medizininformatik-Initiative Nachwuchsgruppe
"Integration und Analyse von multimodalen Sensorsignalen und klinischen Daten zur Diagnostik und Erforschung von neurologischen Bewegungsstörungen" (MoveGroup)
Die im Rahmen der Medizininformatik-Initiative geförderte Nachwuchsforschungsgruppe erforscht unter Leitung von PD Dr. rer.nat. habil. Sebastian Fudickar als Teil des HIGHmed Konsortiums körpernahe und ambiente diagnostische Messsysteme zur kombinierten Erfassung motorischer, kognitiver und sensorischer Fähigkeiten. Deren Differenzierung ist bei der Bewertung der Funktionalität älterer Menschen von großer Bedeutung, um Kausalitäten zwischen kognitiven und motorischen Defiziten identifizieren zu können und so spezifische, Ressourcen-orientierte Therapieansätze zu ermöglichen.
Hierfür werden Messverfahren sowie Identifikations- und Fusionsalgorithmen zur Messung funktionaler Fähigkeiten mittels körpernaher und ambienter Sensorik für ein verbessertes Verständnis von normalem Altern bzw. anormalen individuellen Verläufen prototypisch untersucht und evaluiert. Darauf aufbauend werden Interventionen basierend auf individualisierter, physischer Interaktion mit den Nutzern zur Steigerung der motorischen und kognitiven Leistungsfähigkeit konzipiert.
Die Nachwuchsgruppe konzipiert, implementiert und evaluiert neue Verfahren der Integration und Analyse von multimodalen Sensorsignalen und klinischen Daten zur Diagnostik und Erforschung von Bewegungsstörungen. Dabei sind die wissenschaftliche Zielsetzung und die Forschungsarbeiten des Vorhabens entlang der folgenden drei Hauptziele strukturiert:
Ziel 1 – Sensorbasierte Erfassung, Modellierung von Körperbewegungen:
Durch den Aufbau einer multimodalen Sensorplattform zur detaillierten Erfassung von Körperbewegungen und Entwicklung einer algorithmischen Verarbeitungskette zur Sensordatenfusion und Merkmalsextraktion wird eine präzise, quantitative Analyse von Körperbewegungen ermöglicht.
Ziel 2 – HiGHmed-konforme Datenintegration und -nutzbarmachung:
Zur Integration und Nutzbarmachung von relevanten sensorbasierten Bewegungsmodellen und -profilen für Versorgungs- und Forschungsprozesse, sollen Konzepte für eine Datenspeicherung in einem Data Warehouse unter Wahrung datenschutzrechtlicher und ethischer Regularien und Implikationen erarbeitet und evaluiert werden.
Ziel 3 – Entscheidungsunterstützung und Erkenntnisgewinn mit KI-Methoden:
Zur Entwicklung einer KI-basierten Entscheidungsunterstützung für die med. Versorgung von Patienten mit Bewegungsstörungen werden auf Basis der erhobenen multimodalen Bewegungsdaten maschinelle Lernmodelle entwickelt.
Weitere Projekte
Clinical Anatomy for Well-Informed Patients - CAWIP*
Machine Learning for Patient Triaging*
Abgeschlossene Projekte
CSE - LL Medical Process Modeling*
* Förderung an der Universität Oldenburg
Abschlussarbeiten
Unsere ausgeschriebenen Themen für Abschlussarbeiten findet ihr hier wenn ihr im Uninetz angemeldet seid (z.B. via VPN).
Lehre
Im WS 2024/25 bieten wir wieder die Vorlesung "Advanced Data Analysis Methods for Digital Health Applications" (ADA) – CS4368 als Wahlpflicht für den Master Medizin Informatik an. Für jeden der gerne projektbasiert Lernt und gerne die komplette Datenverarbeitungskette umsetzen will. Schaut rein: https://www.uni-luebeck.de/index.php?id=11229&tx_webparser_pi1%5bmodulid%5d=2546
Studentische Hilfskrafttätigkeiten
Die Arbeitsgruppe bietet weiterhin die Möglichkeit, im Rahmen einer Anstellung als studentische Hilfskraft, einen Einblick in unsere Forschungsvorhaben zu erlangen und auf die Weise aktuelle Forschungsarbeiten zu unterstützen. Die Vergütung basiert auf stundenbasierte Arbeitsverträge (z.B. 20 Std. / Monat), die mit der Universität abgeschlossen und nach Unitarif bezahlt werden. Sprechen Sie uns bei Interesse gerne an.
- Forschung
- KI und Deep Learning in der Medizin
- Medizinische Bildverarbeitung und VR-Simulation
- Integration und Nutzbarmachung von medizinischen Daten
- Sensordatenanalyse für assistive Gesundheitstechnologien
- AG Medical Image Computing and Artificial Intelligence
- AG Medical Data Science
- AG Medical Deep Learning
- AG Medical Data Engineering
- Nachwuchsgruppe Diagnostik und Erforschung von Bewegungsstörungen
Ansprechpartner
Sebastian Fudickar
Nachwuchsgruppenleiter
Gebäude MFC8,2OG
,
Raum 16
sebastian.fudickar(at)uni-luebeck.de
+49 451 3101 5640